10 research outputs found

    Capacity of a Class of State-Dependent Orthogonal Relay Channels

    Full text link
    The class of orthogonal relay channels in which the orthogonal channels connecting the source terminal to the relay and the destination, and the relay to the destination, depend on a state sequence, is considered. It is assumed that the state sequence is fully known at the destination while it is not known at the source or the relay. The capacity of this class of relay channels is characterized, and shown to be achieved by the partial decode-compress-and-forward (pDCF) scheme. Then the capacity of certain binary and Gaussian state-dependent orthogonal relay channels are studied in detail, and it is shown that the compress-and-forward (CF) and partial-decode-and-forward (pDF) schemes are suboptimal in general. To the best of our knowledge, this is the first single relay channel model for which the capacity is achieved by pDCF, while pDF and CF schemes are both suboptimal. Furthermore, it is shown that the capacity of the considered class of state-dependent orthogonal relay channels is in general below the cut-set bound. The conditions under which pDF or CF suffices to meet the cut-set bound, and hence, achieve the capacity, are also derived.Comment: This paper has been accepted by IEEE Transactions on Information Theor

    Joint Source-Channel Coding with Time-Varying Channel and Side-Information

    Full text link
    Transmission of a Gaussian source over a time-varying Gaussian channel is studied in the presence of time-varying correlated side information at the receiver. A block fading model is considered for both the channel and the side information, whose states are assumed to be known only at the receiver. The optimality of separate source and channel coding in terms of average end-to-end distortion is shown when the channel is static while the side information state follows a discrete or a continuous and quasiconcave distribution. When both the channel and side information states are time-varying, separate source and channel coding is suboptimal in general. A partially informed encoder lower bound is studied by providing the channel state information to the encoder. Several achievable transmission schemes are proposed based on uncoded transmission, separate source and channel coding, joint decoding as well as hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for a class of continuous and quasiconcave side information state distributions, while the channel gain may have an arbitrary distribution. To the best of our knowledge, this is the first example in which the uncoded transmission achieves the optimal performance thanks to the time-varying nature of the states, while it is suboptimal in the static version of the same problem. Then, the optimal \emph{distortion exponent}, that quantifies the exponential decay rate of the expected distortion in the high SNR regime, is characterized for Nakagami distributed channel and side information states, and it is shown to be achieved by hybrid digital-analog and joint decoding schemes in certain cases, illustrating the suboptimality of pure digital or analog transmission in general.Comment: Submitted to IEEE Transactions on Information Theor

    Distortion Exponent in MIMO Fading Channels with Time-Varying Source Side Information

    Full text link
    Transmission of a Gaussian source over a time-varying multiple-input multiple-output (MIMO) channel is studied under strict delay constraints. Availability of a correlated side information at the receiver is assumed, whose quality, i.e., correlation with the source signal, also varies over time. A block-fading model is considered for the states of the time-varying channel and the time-varying side information; and perfect state information at the receiver is assumed, while the transmitter knows only the statistics. The high SNR performance, characterized by the \textit{distortion exponent}, is studied for this joint source-channel coding problem. An upper bound is derived and compared with lowers based on list decoding, hybrid digital-analog transmission, as well as multi-layer schemes which transmit successive refinements of the source, relying on progressive and superposed transmission with list decoding. The optimal distortion exponent is characterized for the single-input multiple-output (SIMO) and multiple-input single-output (MISO) scenarios by showing that the distortion exponent achieved by multi-layer superpositon encoding with joint decoding meets the proposed upper bound. In the MIMO scenario, the optimal distortion exponent is characterized in the low bandwidth ratio regime, and it is shown that the multi-layer superposition encoding performs very close to the upper bound in the high bandwidth expansion regime.Comment: Submitted to IEEE Transactions on Information Theor

    Expected Distortion with Fading MIMO Channel and Side Information Quality

    Get PDF
    Projecte final de carrera fet en col.laboraci贸 amb CTTCCatal脿: Considerem el problema de codificaci贸 conjunta de font i canal d'enviar una font Gaussiana sobre un canal fading multi-antena (MIMO) quan el decodificador t茅 informaci贸 adicional correlada amb la font, amb una qualitat tamb茅 variant amb el temps. Assumim un model block fading per ambdues qualitats del canal i la informaci贸 adicional, i assumim coneixement perfecte de canal a recepci贸, mentre que el transmissor nom茅s disposa de coneixement estad铆stic. Estem interessats en la distorsi贸 quadr脿tica mitja d'aquest sistema. Estudiem separaci贸 en la codificaci贸 canal font, transmissi贸 no codificada i dues t猫cniques de codificaci贸 conjunta de font i canal basades en decodificaci贸 conjunta a recepci贸: NBJD, que no utilitza binning no explicit i decodificaci贸 conjunta a recepci贸 i HDA, que comprimeix la font i transmet l?error. Al decodificador, la paraula comprimida es recupera per decodificaci贸 conjunta amb l?error transm猫s i la informaci贸 adicional. Extenem aquestes t猫cniques a esquemes h铆brids anal貌gics-digitals i esquemes multi-capa. Estudiem num猫ricament el problema i donem resultats per el r猫gim de SNR finita. Proporcionem expresions tancades per el Distortion exponent a regim de alta SNR. ////// Castell脿: Consideramos el problema de codificaci贸n conjunta de fuente y canal de enviar una fuente Gaussiana sobre un canal fading multi-antena (MIMO) cuando el decodificador tiene informaci贸n adicional correlada con la fuente, con una cualidad tambi茅n variante en el tiempo. Asumimos un modelo block fading para ambas calidades del canal y la informaci贸n adicional. Asumimos conocimiento perfecto de canal en recepci贸n, mientras que el transmisor solo dispone de conocimiento estad铆stico. Estamos interesados en la distorsi贸n cuadr谩tica media de este sistema. Estudiamos separaci贸n en la codificaci贸n canal fuente, transmisi贸n no codificada y dos t茅cnicas de codificaci贸n conjunta de fuente y canal basadas en decodificaci贸n conjunta en recepci贸n: NBJD, que no utiliza binning no explicito y decodificaci贸n conjunta, y HDA, que comprime la fuente y transmite el error. Al decodificar, la palabra comprimida es recuperada por decodificaci贸n conjunta entre el error transmitido y la informaci贸n adicional. Extendemos estas t茅cnicas a esquemas h铆bridos anal贸gico-digitales y esquemas multi-capa. Estudiamos num茅ricamente el problema y damos resultados para el r茅gimen de SNR finita. Proporcionamos expresiones cerradas para el Distortion exponent en r茅gimen de alta SNR ////// English: We consider the joint source-channel coding problem of sending a Gaussian source over a multiple input-multiple output (MIMO) fading channel when the decoder has additional correlated side information whose quality is also time-varying. We assume a block fading model for both the channel and side information qualities, and assume perfect state information at the receiver, while the transmitter has only a statistical knowledge. We are interested in the expected squared-error distortion for this system. We study separate source-channel coding, uncoded transmission and two joint source-channel transmission schemes based on joint decoding at the receiver: NBJD, that uses no explicit binning and joint decoding of the side information and the channel output at the decoder and HDA, that compresses the source and transmits the error. At the decoder, the quantized codeword is recovered by means of joint decoding of the error and the side information. We extend such techniques to hybrid digital-analog and multi-layer schemes. We study numerically the problem and give results in the finite SNR regime. We provide closed form expressions for the distortion exponent in the high SNR regime

    Lossy Compression for Compute-and-Forward in Limited Backhaul Uplink Multicell Processing

    Full text link
    We study the transmission over a cloud radio access network in which multiple base stations (BS) are connected to a central processor (CP) via finite-capacity backhaul links. We propose two lattice-based coding schemes. In the first scheme, the base stations decode linear combinations of the transmitted messages, in the spirit of compute-and-forward (CoF), but differs from it essentially in that the decoded equations are remapped to linear combinations of the channel input symbols, sent compressed in a lossy manner to the central processor, and are not required to be linearly independent. Also, by opposition to the standard CoF, an appropriate multi-user decoder is utilized to recover the sent messages. The second coding scheme generalizes the first one by also allowing, at each relay node, a joint compression of the decoded equation and the received signal. Both schemes apply in general, but are more suited for situations in which there are more users than base stations. We show that both schemes can outperform standard CoF and successive Wyner-Ziv schemes in certain regimes, and illustrate the gains through some numerical examples.Comment: Submitted to IEEE Transactions on Communication

    Expected Distortion with Fading MIMO Channel and Side Information Quality

    Get PDF
    Projecte final de carrera fet en col.laboraci贸 amb CTTCCatal脿: Considerem el problema de codificaci贸 conjunta de font i canal d'enviar una font Gaussiana sobre un canal fading multi-antena (MIMO) quan el decodificador t茅 informaci贸 adicional correlada amb la font, amb una qualitat tamb茅 variant amb el temps. Assumim un model block fading per ambdues qualitats del canal i la informaci贸 adicional, i assumim coneixement perfecte de canal a recepci贸, mentre que el transmissor nom茅s disposa de coneixement estad铆stic. Estem interessats en la distorsi贸 quadr脿tica mitja d'aquest sistema. Estudiem separaci贸 en la codificaci贸 canal font, transmissi贸 no codificada i dues t猫cniques de codificaci贸 conjunta de font i canal basades en decodificaci贸 conjunta a recepci贸: NBJD, que no utilitza binning no explicit i decodificaci贸 conjunta a recepci贸 i HDA, que comprimeix la font i transmet l?error. Al decodificador, la paraula comprimida es recupera per decodificaci贸 conjunta amb l?error transm猫s i la informaci贸 adicional. Extenem aquestes t猫cniques a esquemes h铆brids anal貌gics-digitals i esquemes multi-capa. Estudiem num猫ricament el problema i donem resultats per el r猫gim de SNR finita. Proporcionem expresions tancades per el Distortion exponent a regim de alta SNR. ////// Castell脿: Consideramos el problema de codificaci贸n conjunta de fuente y canal de enviar una fuente Gaussiana sobre un canal fading multi-antena (MIMO) cuando el decodificador tiene informaci贸n adicional correlada con la fuente, con una cualidad tambi茅n variante en el tiempo. Asumimos un modelo block fading para ambas calidades del canal y la informaci贸n adicional. Asumimos conocimiento perfecto de canal en recepci贸n, mientras que el transmisor solo dispone de conocimiento estad铆stico. Estamos interesados en la distorsi贸n cuadr谩tica media de este sistema. Estudiamos separaci贸n en la codificaci贸n canal fuente, transmisi贸n no codificada y dos t茅cnicas de codificaci贸n conjunta de fuente y canal basadas en decodificaci贸n conjunta en recepci贸n: NBJD, que no utiliza binning no explicito y decodificaci贸n conjunta, y HDA, que comprime la fuente y transmite el error. Al decodificar, la palabra comprimida es recuperada por decodificaci贸n conjunta entre el error transmitido y la informaci贸n adicional. Extendemos estas t茅cnicas a esquemas h铆bridos anal贸gico-digitales y esquemas multi-capa. Estudiamos num茅ricamente el problema y damos resultados para el r茅gimen de SNR finita. Proporcionamos expresiones cerradas para el Distortion exponent en r茅gimen de alta SNR ////// English: We consider the joint source-channel coding problem of sending a Gaussian source over a multiple input-multiple output (MIMO) fading channel when the decoder has additional correlated side information whose quality is also time-varying. We assume a block fading model for both the channel and side information qualities, and assume perfect state information at the receiver, while the transmitter has only a statistical knowledge. We are interested in the expected squared-error distortion for this system. We study separate source-channel coding, uncoded transmission and two joint source-channel transmission schemes based on joint decoding at the receiver: NBJD, that uses no explicit binning and joint decoding of the side information and the channel output at the decoder and HDA, that compresses the source and transmits the error. At the decoder, the quantized codeword is recovered by means of joint decoding of the error and the side information. We extend such techniques to hybrid digital-analog and multi-layer schemes. We study numerically the problem and give results in the finite SNR regime. We provide closed form expressions for the distortion exponent in the high SNR regime

    Expected Distortion with Fading MIMO Channel and Side Information Quality

    No full text
    Projecte final de carrera fet en col.laboraci贸 amb CTTCCatal脿: Considerem el problema de codificaci贸 conjunta de font i canal d'enviar una font Gaussiana sobre un canal fading multi-antena (MIMO) quan el decodificador t茅 informaci贸 adicional correlada amb la font, amb una qualitat tamb茅 variant amb el temps. Assumim un model block fading per ambdues qualitats del canal i la informaci贸 adicional, i assumim coneixement perfecte de canal a recepci贸, mentre que el transmissor nom茅s disposa de coneixement estad铆stic. Estem interessats en la distorsi贸 quadr脿tica mitja d'aquest sistema. Estudiem separaci贸 en la codificaci贸 canal font, transmissi贸 no codificada i dues t猫cniques de codificaci贸 conjunta de font i canal basades en decodificaci贸 conjunta a recepci贸: NBJD, que no utilitza binning no explicit i decodificaci贸 conjunta a recepci贸 i HDA, que comprimeix la font i transmet l?error. Al decodificador, la paraula comprimida es recupera per decodificaci贸 conjunta amb l?error transm猫s i la informaci贸 adicional. Extenem aquestes t猫cniques a esquemes h铆brids anal貌gics-digitals i esquemes multi-capa. Estudiem num猫ricament el problema i donem resultats per el r猫gim de SNR finita. Proporcionem expresions tancades per el Distortion exponent a regim de alta SNR. ////// Castell脿: Consideramos el problema de codificaci贸n conjunta de fuente y canal de enviar una fuente Gaussiana sobre un canal fading multi-antena (MIMO) cuando el decodificador tiene informaci贸n adicional correlada con la fuente, con una cualidad tambi茅n variante en el tiempo. Asumimos un modelo block fading para ambas calidades del canal y la informaci贸n adicional. Asumimos conocimiento perfecto de canal en recepci贸n, mientras que el transmisor solo dispone de conocimiento estad铆stico. Estamos interesados en la distorsi贸n cuadr谩tica media de este sistema. Estudiamos separaci贸n en la codificaci贸n canal fuente, transmisi贸n no codificada y dos t茅cnicas de codificaci贸n conjunta de fuente y canal basadas en decodificaci贸n conjunta en recepci贸n: NBJD, que no utiliza binning no explicito y decodificaci贸n conjunta, y HDA, que comprime la fuente y transmite el error. Al decodificar, la palabra comprimida es recuperada por decodificaci贸n conjunta entre el error transmitido y la informaci贸n adicional. Extendemos estas t茅cnicas a esquemas h铆bridos anal贸gico-digitales y esquemas multi-capa. Estudiamos num茅ricamente el problema y damos resultados para el r茅gimen de SNR finita. Proporcionamos expresiones cerradas para el Distortion exponent en r茅gimen de alta SNR ////// English: We consider the joint source-channel coding problem of sending a Gaussian source over a multiple input-multiple output (MIMO) fading channel when the decoder has additional correlated side information whose quality is also time-varying. We assume a block fading model for both the channel and side information qualities, and assume perfect state information at the receiver, while the transmitter has only a statistical knowledge. We are interested in the expected squared-error distortion for this system. We study separate source-channel coding, uncoded transmission and two joint source-channel transmission schemes based on joint decoding at the receiver: NBJD, that uses no explicit binning and joint decoding of the side information and the channel output at the decoder and HDA, that compresses the source and transmits the error. At the decoder, the quantized codeword is recovered by means of joint decoding of the error and the side information. We extend such techniques to hybrid digital-analog and multi-layer schemes. We study numerically the problem and give results in the finite SNR regime. We provide closed form expressions for the distortion exponent in the high SNR regime

    Capacity of a Class of State-Dependent Orthogonal Relay Channels

    No full text
    Abstract-The class of orthogonal relay channels in which the orthogonal channels connecting the source terminal to the relay and the destination, and the relay to the destination, depend on a state sequence, is considered. It is assumed that the state sequence is fully known at the destination while it is not known at the source or the relay. The capacity of this class of relay channels is characterized, and shown to be achieved by the partial decode-compress-and-forward (pDCF) scheme. Then the capacity of certain binary and Gaussian state-dependent orthogonal relay channels are studied in detail, and it is shown that the compress-and-forward (CF) and partial-decode-andforward (pDF) schemes are suboptimal in general. To the best of our knowledge, this is the first single relay channel model for which the capacity is achieved by pDCF, while pDF and CF schemes are both suboptimal. Furthermore, it is shown that the capacity of the considered class of state-dependent orthogonal relay channels is in general below the cut-set bound. The conditions under which pDF or CF suffices to meet the cut-set bound, and hence, achieve the capacity, are also derived
    corecore